INSTABILITY OF MONOCHROMATIC WAVES ON THE
SURFACE OF A LIQUID OF ARBITRARY DEPTH

V. E. Zakharov and V. G. Kharitonov

A study is made of the stability, with respect to the spontaneous appearance of modulation,
of steady periodic waves of small amplitude on the surface of an ideal liquid depth. The
well-known instability of waves on the surface of a liquid of infinite depth disappears on
making the transition to small depths.

As is well known, nonlinear steady waves on the surface of a liguid are unstable [1, 4]. The insta-
bility increment describing the rate of growth of waves on the surface of a liquid of infinite depth is ob-
tained in its most general form in [1]. The case of infinite depth is analyzed in detail in [2], where inter
alia capillary effects are taken into account. The instability of waves on the surface of a liquid of finite
depth is examined in [3, 4], although the analysis is restricted to the one-dimensional problem where the
wave vectors of the perturbations are parallel to the wave vector of the initial wave, In the present article
we discuss the instability of waves on the surface of a liquid of finite depth for an arbitrary direction of
perturbation wave vector. We assume, however, that the wave vectors of the perturbations are sufficient-
ly close to the wave vector of the initial wave that the instability can be represented as a spontaneous
growth of modulation on a background of the initial wave. Such "modulation" instabilities are known for
waves in a nonlinear dielectric [5].

We consider the potential flow of an ideal liquid of arbitrary depth in a wmiform gravitational field,
The coordinate system is chosen so that, in its unperturbed state, the surface of the liquid lies in the xy
plane. The x axis points out of the liquid. All vector quantities relate to two-dimensional vectors in the
xy plane.

Let n{r, t) denote the shape of the liquid surface and &(r, z, t) the hydrodynamic potential. The flow
of the liquid is described by Laplace's equation with two boundary conditions at the surface and one at the
bottom:

20D

AD - e =0 (1)
0 e, 00 i)
A=Vit (Vap a?rfpn: Tl — VVO| @)
oD _ {vop 1 (0D 2
”ij'+gn—— ) z:n—‘_z—(\_é—; 2oy, @)
oD (4)
E Z==—Hh = O
The total energy of the liquid is given by
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By virtue of the unigueness of the solution of the boundary problem for Laplace's equation, the flow of
the liquid is completely determined when 1 and ¥ are assigned,

Utilizing the formula
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we obtain from Eq, (3)
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As shown in [2], 17 and ¥ are canonical variables, the energy E is the Hamiltonian of the system, and
Egs. (2), (6) are Hamilton's equations.

We shall now proceed to solve the boundary problem for Laplace's equation. First of all, we carry
out a Fourier transformation with respect to the coordinates x and y
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The general solution of Laplace’s equation in which the boundary condition at the bottom has been
taken into account is given by
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In the subsequent discussion we shall seek a solution in the form of a series in powers of 1, restrict-
ing ourselves to terms of order not higher than 7°. Remembering that
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and expanding the exponential as a series, we obtain

hik =Ry [, R
® (k, 2) = LLLEED L) - (o ) m (k) st 28
— iy — )y — 5 1]k — ks [ th [k -~ s [ b+ [k — ko |th |k — k| (8)

— k| th|k|A] |k | ¥ (ki) 0 (ko) 0 (ks) 8 (k — kg — ky — k) dkxdkzdks}

Performing a canonical transformation to the complex-variable a(k)-amplitudes of travelling waves
through the formulas
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we obtain the Hamiltonian in the form
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Here w(k) = vgJk|th|k|h is the dispersion law for gravitational waves. The expressions for the func-
tions Vik, k;, k), Uk, ky, ky) and Wk, k;, ky, k) are cumbersome and will not be reproduced here.

The equations of motion are obtained by variation of the Hamiltonian in accordance with the laws
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Let the period of the steady wave be L = 2r/k,. Its main harmonic is then A6(k —k,). Nonlinear in-
teraction leads to the appearance of zeroth and second harmonics, Assuming that the wave is weakly mod-

ulated as a result of instability, we write the function a(k) in the form
a (k) = b (k) + @, (k) + a2 (k)
where b(k), a,(k), a,(k) are concentrated respectively near k =0, k =k, and k = 2k,.
The following conditions hold for the weak nonlinearity under investigation:
ank<ak), Ek<<ak)

This gives for a,(k) when (13) is inserted into equation of motion (12):
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or, assuming a sufficiently narrow wave packet,
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Let us insert (13) into Hamiltonian (10), expressing a,(k) by formula (15). Further, we shall retain
in the Hamiltonian only those terms which contain a,(k) in the form of the product a,(k)a,(k), since the con-

tribution from other terms will be small.

The resulting simplified Hamiltonian has the form
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where we have dropped the index 1 in g,(k). Here
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Hamiltonian (16) corresponds to the equations of motion
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If 7(0) = 0, system (19), (20) has the exact solution
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which represents a monochromatic wave with a frequency which depends on its amplitude.

We now investigate the stability of solution (21) with respect to small perturbations of the form
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Any perturbation can be represented as a superposition of perturbations (22).

The following fourth-order dispersion equation is obtained on inserting (22) into the equations of mo-
tion (2) and (20):
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Since the spectrum of gravitational waves does not collapse [6], one would expect an instability to
develop when the wave vectors satisfy (see [1])
o (Ko + %) + o (ky — %) = 20 (k) (24)
The wave vectors lie near the surface:
o (ky + %) — 0 (ko) = 0 (ko) — @ (kg — ) =

In the case under investigation [%| <k, we can put & = Q; + 6§, We then have, correct to second
order terms in 6%,
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The instability increment is then given by
7= V2A%LG - (Ln?)? (28)

In this manner, we have a condition for stability at small [% |}, namely, LG > 0,

The functions L and G have the following form in the present case:
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If x is not too small,
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Evidently, the instability increment is at its greatest when 6 = 0, and the instability develops for an-
gles less than a critical value,

For x «1

ko? z2
6= 3211:2.7;3{1 1—0039—[—1/3:%099} (32)
L~ ]/—gk—o- {sin?8 — z% cos? 0}
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In this case, evidently, the instability cannot develop at large angles. For small angles
G~ (82 — 2%, L ~ (6% — 2%

i.e., LG ~ (0 ~ x?) is always greater than zero. In this manner, in the first order in x, waves on the sur-
face of a liquid of small depth are stable, Investigation of the stabilily in the next order in X requires a
more exact theory.
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